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We present a quantum system composed of infinitely many particles, subject to
a nonquadratic Hamiltonian, for which it is possible to investigate the long time
behavior of the dynamics and its ergodic properties. We do so both for the
KMS states and for a large class of locally normal invariant states, whose very
existence is already of some interest.

KEY WORDS: Quantum dynamics; nonequilibrium statistical mechanics;
ergodic theory; irreversible thermodynamics; operator theory, applications to
statistical mechanics.

1. INTRODUCTION

The last years have witnessed a growing interest in the ergodic properties
of non relativistic quantum systems. For example, on the one hand a large
literature has been devoted to the so called ``quantum chaos,'' that is to the
study of the spectrum of the Hamiltonians whose classical associated
motion enjoys strong ergodic properties (see refs. 14, 19, and 33 for an
overview). On the other hand, there has been renewed interest in the
study of the convergence to equilibrium in quantum systems (i.e., in the
study of strong statistical properties directly in the quantum set-
ting).(13, 15, 23, 28, 29, 34) Of course, in order for such ergodic properties to be
present at all, the quantum system must have infinitely many degree of
freedom, otherwise only quasi periodic motions can take place.
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The present paper illustrates, and investigates in details, a simple, but
non trivial, class of models of infinite non relativistic quantum systems that
exhibit relaxation to equilibrium. Such models are examples of one dimen-
sional harmonic crystals with defects first studied by Ford, Kac, and
Mazur(11) and are akin to the one studied in ref. 9 from a different point
of view. Indeed, the model consists of an infinite harmonic chain of par-
ticles with a special particle subject to a non harmonic external potential.
It can also be thought as a model for a particle subject to an external
potential and in contact with a thermal bath (see ref. 9 and references
within).

The aim of our analysis is not only to obtain a full understanding of
the examples at hand, which already present interesting features, but also
to use these concrete examples as a guide into the subtleties of the matter.
In particular, on the one hand our work illustrates the role played by the
choice of the right set of observables, on the other hand it suggests that
some regularity requirements, usually assumed in the study of C*-dynami-
cal systems (see, e.g., refs. 8 and 28), may be too stringent to be applicable
to the cases under consideration, which fall into a very general setting.

In contrast with much work present in the literature, our models are
not exactly solvable (the dynamics it is not linear) and we go beyond KMS
states.

We first show that, when the dynamics is linear, the above systems are
mixing (or strongly clustering, according to terminology in current
literature) with respect to a large class of quasi-free states. This result is
neither surprising nor completely new. Namely, similar results exist for
classical and quantum systems (see, e.g., refs. 13, 22, and 35) and only a
technical difficulty��in our systems the spectrum of the generator of the
classical dynamics may not be bounded away from zero�prevents us from
presenting our results as a corollary of previous ones. Remark that the
restriction to quasi-free states is rather natural since, under some technical
conditions, all invariant states for a linear dynamics are quasi-free.(6)

Next, we consider the case in which a non-harmonic potential acting
on the special particle is present (in fact, we consider bounded analytic per-
turbations of a harmonic potential). It is well known that, in such a situa-
tion, the dynamics can be expressed via a perturbation expansion. The
novelty here consists in the possibility to control the series uniformly in
time when the perturbation is not too large. Thanks to this, we are able to
investigate the asymptotic properties of our model. We prove that the
KMS states are mixing once the algebra of observable's has been properly
restricted. More surprisingly, to each quasi-free state, invariant for the
linear evolution, it is associated an invariant state for the perturbed evolu-
tion and such states are mixing, provided the original one is.
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This last result seems to point to a persistence of the integrals of
motion under perturbations and may suggest that the stability theorems
which characterize the KMS state as the only stable state(8, 21, 30) employ a
definition of ``stability'' too strong to be physically relevant, at least in
some cases. We think this possibility deserves to be further investigated,
eventually considering more general perturbations and different integrable
models as a starting point.

The above mentioned smallness assumption on the non quadratic part
of the external potential is such that we cannot change the convexity of the
potential. Accordingly, we cannot consider a double well potential. It is not
clear to us if this limitation is just of a technical nature or if it corresponds
to a physical obstruction. This problem requires further study.

The mathematical machinery employed is borrowed from operator
algebras. As we always deal with dynamical systems where the time evolu-
tion has continuity property weaker than norm continuity, we cannot work
directly in the framework of C*-dynamical systems. Moreover, the ergodic
properties that we want to investigate are not likely to hold on ``natural''
von Neumann algebras. Thus also W*-dynamical systems are not adequate
to our needs. In view of such a situation we introduce the following setting.

We consider the couple (A, :t) where A is a C*-algebra and t � :t is
a representation of the additive group of real numbers into the group of the
automorphisms of the C*-algebra A, that is a dynamical system.

We say that a representation ? of A on a separable Hilbert space gives
rise to a continuous dynamical system if the maps

t # R � ?(:t A)

are all continuous in the weak (equiv. strong, strong*) operator topology.
As it is widely known, there are very simple examples satisfying the

above picture, e.g., the dynamical system associated to a free particle.
Moreover, if we deal with a group of Bogoliubov transformations t � Tt

of a CCR C*-algebra built on a symplectic space (H, _), the Gelfand�
Naimark�Segal (GNS for short) representation ?| relative to any state |
gives rise to a continuous dynamical system according to the above defini-
tion, provided that both functions

T # R � _(u, Ttv)

T # R � |(W(u+Ttv))

are continuous for fixed, u, v # H.
It is straightforward to show that, if | is an invariant state satisfying

the above conditions, then the time evolution is implemented on the GNS
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Hilbert space H| by an one-parameter weakly continuous unitary group.
Thus, the GNS triple relative to | leads to a continuous covariant
representation for the system (A, :t , |).

In this paper, a triple (A, :t , |) made of the dynamical system (A, :t)
together with a state | such that the GNS representation ?| gives rise to
a continuous dynamical systems in the above sense, is said to be a Quan-
tum Dynamical System (QDS for short).

Concerning ergodic properties of a QDS (A, :t , |) with | invariant,
we introduce the following definitions (see, e.g., refs. 16 and 21):

(i) (A, :t) is asymptotically abelian if

lim
t � �

&[:t A, B]&=0

for every A, B # A.

(ii) (A, :t , |) is ergodic if | is the only invariant state for :t in
?|(A)"

*
.

(iii) (A, :t , |) is weakly mixing if

mt(|(A(:tC ) B)&|(AB) |(C ))=0 (1.1)

for every A, B, C # A and mt is any invariant mean on R.

(iv) (A, :t , |) is mixing if

lim
t � �

|(A(:tC ) B)=|(AB) |(C) (1.2)

for every A, B, C # A.

We note that a state | enjoying properties (iii) or (iv) is referred, in
the current literature, as a weakly clustering or strongly clustering state
respectively, see, e.g., refs. 7, 8, 16, 21, and 28. Yet, in analogy with the
classical case, we prefer to retain our terminology since properties (iii) and
(iv) are the natural generalizations to quantum (i.e., non commutative)
cases of analogous properties considered in commutative cases, see, e.g.,
refs. 4 and 17.

Noticing that we have the chain of implications (iv) O (iii) O (ii) for
the above properties (ref. 21, Theorem 2.1), we focus our attention only on
properties (i) and (iv).
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Finally, we remark that, for asymptotically abelian QDS (A, :t , |),
property (iv) is equivalent to

lim
t � �

|(A:tB)=|(A) |(B) (1.3)

for every A, B # A (two-point clustering).3 We will always use the above
remark when proving mixing.

A tool often used in C* or W*-dynamical systems in order to
investigate asymptotic properties is the following strengthening of (i):

(v) (A, :t) is L1-asymptotically abelian if there exists a norm-dense
V-subalgebra A0/A such that

|
�

0
&[:t A, B]& dt<+�

for every A, B # A0 .

We will employ a similar, but weaker, condition in our analysis,
although we do not find convenient to state it in such general terms (basi-
cally, we require (v) for a much smaller set of operators).

The paper is composed by three parts.
The first one (Sections 2�4) contains the presentation of the class of

models under consideration together with some of their basic properties.
The linear case and ergodic properties of some of its quasi-free states are
also investigated in great detail.

The dynamics, as well as ergodic properties of the non-linear case
(obtained by perturbing the linear system via a non-quadratic potential), is
intensively analyzed in the second part (Sections 5 and 6) of the paper.

The last part includes three appendices where, for the reader's con-
venience, we have collected all the needed computations.

2. THE MODEL AND THE RESULTS

We begin our analysis considering the Hamiltonian

H(q, p)=
1

2m
:

i # Z

p2
i +

1
2 \

1
M

&
1
m+ p2

0+
K0

2
:

i # Z

(qi+1&qi )
2

+ :
i # Z

}
2

q2
i +V

*
(q0)
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For simplicity we choose the unity of measure such that m=1,
4K0=1 and �=1. Thus we obtain

H(q, p)=
1
2

:
i # Z

p2
i +

1
2 \

1
M

&1+ p2
0+

1
8

:
i # Z

(qi+1&qi )
2

+ :
i # Z

}
2

q2
i +V

*
(q0) (2.1)

As a preliminary step, in the first part of the paper we will consider the
special case in which V

*
(q)=(K�2) q2, K>0, which yields the quadratic

Hamiltonian

H(q, p)=
1
2

:
i # Z

p2
i +

1
2 \

1
M

&1+ p2
0+

1
8

:
i # Z

(qi+1&qi )
2

+ :
i # Z

}
2

q2
i +

K
2

q2
0 (2.2)

Clearly H represents an infinite harmonic chain with a particle of
different mass subject to an external potential. We will consider both the
case }>0 and the case }=0, when an infrared divergence is present.

In order to study the evolution of such a (quantum) system, let us
consider the real vector space L2

R(Z)2 :=L2
R(Z)�L2

R(Z) of the doubly
infinite sequences that are square summable and the symplectic space
(L2

R(Z)2, _) with symplectic form

_(v, w)= 1
2 :

i # Z

v1
i w2

i &v2
i w1

i

for each v=(v1, v2), w=(w1, w2) # L2
R(Z)2.

We introduce the block operator A+ : L2
R(Z)2 � L2

R(Z)2

A+=\ 0
1
4 2++I&kP

I&aP

0 +
where +=&},4 a=1&1�M and P, 2 are operators from L2

R(Z) to L2
R(Z)

defined by (Pv) i=$i0v0 and (2v) i=vi+1+vi&1&2vi , respectively.5
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It is well known (see, e.g., refs. 1�3, 8, 20, 24, 26, and 38) that, in a
quantum system, the observables are described by a CCR algebra over
(appropriate subspaces of ) L2

R(Z)2. More precisely, to each symplectic sub-
space H/L2

R(Z)2, it is uniquely associated a C*-algebra A(H, _).6

The algebras of observables that will be relevant in the sequel are
determined by the Banach spaces W n(Z) made of sequences v#[vk] such
that

&v&W n :=_ :
k # Z

( |k|n+1) |vk |&<+�

(of course W 0=L1).
It is immediate to verify that A*+ generate a one-parameter group of

Bogoliubov automorphisms (simply the adjoint of the classical evolution)

T +
t v :=etA*+ v, t # R (2.3)

on each of the symplectic spaces (L2
R(Z)2, _) and (W n

R(Z)2, _). Thus, the
dynamics relative to the Hamiltonian (2.2) is uniquely determined on all
C*-algebras A(L2

R(Z)2, _) and A(W n
R(Z)2, _) by the following action on

the generators:

:+, 0
t W(v) :=W(T +

t v), t # R (2.4)

In Section 4.1 we will see that the C*-algebra A(L2
R(Z)2, _) is asymp-

totically abelian w.r.t. the dynamics : +, 0
t , +<0, whereas the C*-algebra

A(W 2
R(Z)2, _) is asymptotically abelian w.r.t. the dynamics :0, 0

t (Proposi-
tion 4.1).

Next, in Section 4.2, we introduce a wide class of quasi-free states |
for the case +<0. We show that the associated Quantum Dynamical
System (A(L2

R(Z)2, _), : +, 0
t , |) is mixing (Proposition 4.3). Such states do

include the KMS states and ground states (see Section 4.4).
The case with +=0 is analyzed in Section 4.3 where a class of quasi-

free states |, containing KMS states, is studied as well. Also in this case,
the QDS (A(W 2

R(Z)2, _), :0, 0
t , |) is mixing (Proposition 4.6).

The definition of the dynamics : +, P
t associated to the Hamiltonian

(2.1) with

V
*

(x) :=
K
2

x2+V(x)
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is more delicate. The main obstacle is that the operator associated to the
potential V is not necessarily an element of the above C*-algebras.

To be more precise we will consider

V(x)=|
R

ei*x&(d*)

where & is a bounded complex measure with real Fourier transform.
Clearly, the self-adjoint operator P naturally associated to V(x) should be

P :=|
R

W(*e0, 1) &(d*)

where e0, 1=(e0 , 0) and, as usual, e0=(..., 0, 1, 0,...). Unfortunately the
above integral has meaning only in the weak topologies associated to a
suitable representation ? of A=A(W 2

R(Z)2, _) (e.g., the weak*-topology of
?(A)"), not in the norm one. It is thus necessary to enlarge in a canonical
way our C*-algebras in order to define QDSs in the non linear case. This
new algebra of observables will depend on the state under consideration.
Note that the idea to choose the von Neumann algebra associated to the
representation would not be too good: on such an enormous algebra there
is no reason why the system should enjoy any interesting ergodic property
at all. The above program is carried out in Section 6, where suitable
C*-algebras M| , are introduced.

It should be noticed that the present program bears some analogies
with work done on these ``Quantum Langevin Equation.'' In fact Ford,
Kac, and Mazur(11) have shown that the time evolution of the position of
the heavy particle of the model described above, limited to the harmonic
case, can be described, but only in an appropriate scaling, by a Quantum
Langevin equation (see ref. 9 for a derivation in the anharmonic case).
Such a Langevin equation has been investigated by Maassen in ref. 25 with
an approach similar to ours. In particular he is able to study the return to
equilibrium for temperature states. It should be noted that, given the
special nature of his setting, he can treat a larger class of anharmonic per-
turbations.7

Our main result can then be summarized by the following theorem.

Theorem 2.1. Suppose that the potential V is sufficiently small.
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Then the following assertions hold.

(i) To any quasi-free state | on A invariant w.r.t. the linear
dynamics : +, 0

t , such that v # W 2
R(Z)2 � |(W(v)) # C is a Borel function, it

corresponds a unique state |� on M| invariant w.r.t. the non linear
dynamics : +, P

t , which can be obtained as the following pointwise limit:

|�(A)= lim
t � \�

|(: +, P
t A)

(ii) If the QDS (A, :+, 0
t , |) is mixing, then the QDS (M| , : +, P

t , |�)
is mixing.

The meaning of ``sufficiently small'' in the above theorem is specified
by (6.1), in particular V must be analytic.

A crucial step in the proof of the above theorem is the derivation of
the following integral equation (see Lemma 6.9)

f (v)=|(W(v))+|
�

0
ds |

R

&(d*) f (*e0, 1+Tsv) g(v, s, *) (2.5)

where f belongs to the class of locally bounded Borel function on the
symplectic space and g is a kernel determined by the commutation rule
between Weyl operators (5.6). We show that, in our case, Eq. (2.5) has a
unique solution given precisely by f (v)=|�(W(v)).

It is quite clear that the above equation holds in a more general
setting and could be the starting point for a non perturbative study of the
approach to equilibrium (see ref. 32 for very recent related results).

3. PRELIMINARIES ABOUT THE LINEAR MODEL

Even though much of the analysis of the linear model can be carried
out by general considerations, to study ergodic properties of our specific
models it is necessary to have detailed information on the spectral proper-
ties of the infinitesimal generator of the time evolution.

In order to obtain a more explicit representation of the time evolution
(2.3) relative to the quadratic Hamiltonian (2.2), we use the discrete
Fourier transform.

If we define F: L2(Z) � L2(&1, 1) by

Fv := :
k # Z

vkei?kx
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then it is easy to show that F(L2
R(Z)) is precisely made of all functions

[ f # L2(&1, 1) | f =Cf ]=: L where the conjugation C is defined by

(Cf )(x) := f (&x) (3.1)

As F is a unitary map, it is an isometry on L� :=F(L2
R(Z)2) equipped with

the natural scalar product

( f, g)= 1
2 |

1

&1
f� g

Moreover, F realizes a symplectic map between L2
R(Z)2 and L� ,

provided we equip the last space with the symplectic form

_( f, g)= 1
2 (( f 1, g2)&( f 2, g1) ) (3.2)

where f =( f 1, f 2) and g=(g1, g2) are element of L� (by a slight abuse of
notation we have used _ to designate the symplectic form both on L� and
L2

R(Z)2).
A straightforward computation yields

4+ :=FA+ F &1=\ 0
0++I&KP�

(I&aP� )
0 +

where P� : L � L and 0: L � L are defined by P� f = 1
2 �1

&1 f and (0f )(x)=
1
2 (cos(?x)&1) f (x) :=|(x) f (x). Note that, setting c=M&1, (I&aP� )&1

=I+cP� and 0++I&KP� =0++(I+cP� )&bP� , with b=K++c.
We are interested in studying analytic functions of A+ , hence of 4+ . In

particular, we need an explicit expression for e4*+ t.
Setting

1 :=I&aP� , D :=0&bP�

we have

3+ :=(I&aP� )(0+1 &1+&bP� )#1D++I (3.3)

in addition,

3+ 1=13*+

(1 and D are both self-adjoint).
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The importance of (3.3) is clear if we compute the dynamics (2.3) via
its Taylor expansion. We obtain

e4*+ t= :
�

n=0

t2n

(2n)! \
1 &13 n

+ 1
0

0
3 n

+++ :
�

n=0

t2n+1

(2n+1)! \
0

3 n
+1

1 &13 n+1
+

0 +
(3.4)

where the series converge in norm, uniformly on bounded sets of R.
In conclusion, we need to develop a functional calculus for the

operator

3 :=30=1D=0&P� (\I+a0)

where \=b(1&a). Since the spectrum of 0 is [&1, 0], and it is all essen-
tial spectrum, the spectrum of 3 (which is a perturbation of 0 by a rank
one operator) must contain [&1, 0], see ref. 10. In addition, for all
z � [&1, 0] for which

$(z)=&[1&(1, (\I+a0)(0&zI )&1 1)]&1 (3.5)

it is well defined, it is easy to verify that

R3 (z) :=[I&$(z)(0&zI )&1 P� (\I+a0)](0&zI )&1 (3.6)

is the inverse of 3&zI (just multiply on the left and on the right), that is
the resolvent of 3. Consequently the study of the spectrum of 3 is reduced
to the study of $(z).

From Appendix A we have, for all z � [&1, 0],

$(z)=&{1&a+
2(\+az)

- (1+2z)2&1=
&1

(3.7)

which is well defined for z � [&1, 0] only if 1+K�(1+})<M<1+(K�});
otherwise it has one pole on R"[&1, 0] which corresponds to an eigen-
value of the operator 3 (for details and the exact definition of the square
root see Appendix A). We also note that, as (see (3.1) for the definition
of C )

3C=C3

it is easy to verify that

CR3 (z) C=R3 (z� ) (3.8)

1 &1�2R3 (z) 1 1�2=1 1�2R3*(z) 1 &1�2 (3.9)
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Summarizing we have

Proposition 3.1. If f is a function analytic in a neighborhood of
[&1, 0], 1+K�(1+})<M<1+(K�}) and #c is a Jordan curve in the
domain of analyticity of f and surrounding counterclockwise [&1, 0].
Then

(i) f (3)=&(1�2?i ) �#c
f (z) R3 (z) dz, where the integral is under-

stood as a Bochner integral.

(ii) The operator 1 &1�2f (3) 1 1�2 is a normal operator.

(iii) If f | [&1, 0] is real, then

(a) Cf (3) C= f (3),

(b) 1 &1�2f (3) 1 1�2 is self-adjoint.

Proof. (i) Since we show in Appendix A that, under the above
hypothesis on M, the spectrum of 3 is [&1, 0], the first part of the
proposition follows from the standard analytic functional calculus.(10)

(ii) We choose a sufficiently small rectangle surrounding [&1, 0],
symmetric w.r.t. the usual complex conjugation, as the contour #c . Thus,

(1 &1�2 f (3) 1 1�2)*#\&
1

2?i |
#c

f (z) 1 &1�2R3 (z) 1 1�2 dz+*

=&
1

2?i |
#c

f *(z) 1 &1�2R3 (z) 1 1�2 dz

#1 &1�2f *(3) 1 1�2

since f *(z) := f (z� ) is also analytic in a neighborhood of [&1, 0]. The
second identity follows by (3.9) after an elementary change of variable in
the integral. Then

(1 &1�2 f (3) 1 1�2)* 1 &1�2 f (3) 1 1�2=1 &1�2 f *(3) f (3) 1 1�2

=1 &1�2 f (3) f *(3) 1 1�2

=1 &1�2 f (3) 1 1�21 &1�2 f *(3) 1 1�2

#1 &1�2 f (3) 1 1�2(1 &1�2 f (3) 1 1�2)*

that is 1 &1�2 f (3) 1 1�2 is normal.
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(iii) As f (z)= f *(z) in a neighborhood of [&1, 0], if f is real when
restricted to [&1, 0], the last part of the assertion now follows directly by
the above computation for (b) and by a similar calculation for (a) taking
into account (3.8). K

4. ANALYSIS OF THE LINEAR MODEL

In this section we will investigate ergodic properties of the class of
linear models presented in Section 2.

The study of the spectrum of 3 has already emphasized that if
M � (1+K�(1+}), 1+(K�})), then it is present a point eigenvalue, hence
the motion has a periodic component. Clearly, in such a situation the
system will exhibit a periodic component (and thus will not be mixing),
unless the point eigenvalue corresponds to the ground state. To simplify
matters we will restrict our discussion to the case M # (1+K�(1+}),
1+(K�})) and split up our analysis in two cases: +=&}<0 and +=0.

4.1. Asymptotic Abelianess

Here we analyze the properties of asymptotic abelianess of (suitable
CCR subalgebras of ) the CCR C*-algebra A(L2

R(Z)2, _). Because of the
possibility of an infrared divergence, due to the presence of the spectrum of
3 up to 0&, we distinguish the case with +=0 from the case with +<0
where no infrared divergence is present.

Proposition 4.1. The following assertions hold.

(i) For each +<0 the C*-algebra A(L2
R(Z)2, _) is asymptotically

abelian w.r.t. the dynamics generated by t � W(T +
t v).

(ii) If +=0 the C*-algebra A(W 2
R(Z)2, _) is also asymptotically

abelian w.r.t. the dynamics generated by t � W(T 0
t v).

Proof. Setting

S :=\1
0

0
I+ , S� :=\ I

0
0

1 &1+ (4.1)

we compute _(u, T +
t v) for general elements u and v in L2(Z)2 (or in

W 2(Z)2 when +=0). By Proposition B.2 and B.1 it follows

_(u, T +
t v)=

1
2?

:
2

m, j=1
|

0

&1
Amj (x++, t) r(S� u)m, (Sv) j (x) dx

969Ergodic Properties for a Quantum Nonlinear Dynamics



where Amj (z++, t), m, j=1, 2 are (except a sign) one of the functions
hp(z++, t), hd (z++, t) or (z++) hd (z++, t) given in Appendix B. After
the change of variable !2=&(x++), we obtain

_(u, T +
t v)=

1
?

:
2

m, j=1
|

- 1&+

- &+
amj (!t) fmj (!) rS� um, Sv j (&(!2++)) d!

where amj (!t) is sin(!t) for the diagonal elements and cos(!t) for the off-
diagonal ones whereas fmj (!) is ! for the off diagonal elements, one for
(m, j)=(1, 1) and !2 for (m, j)=(2, 2). Finally, for every m, j # [1, 2] and
+�0, we have the estimate

2 |
- 1&+

- &+
d! | fmj (!) r(S� u)m, (Sv) j (&(!2++))|

�max[- 1&+, 1] |
0

&1
dx

|r(S� u)m, (Sv) j (x)|

- &(x++)

(i) From (B.2) we obtain

|
0

&1
dx

|r(S� ) um, (Sv) j (x)|

- &(x++)
�

C1a

- &+(1&a)
&u&L2 &v&L2

So that _(u, T +
t v) is the combination of four pieces each of them being

proportional to the real or imaginary part of the Fourier transform of
a summable function. We immediately conclude, by Riemann�Lebesgue
lemma,

lim
t � \�

_(u, T +
t v)=0

Now, as

&[W(u), W(T +
t v)]&=2 sin |_(u, T +

t v)|

we have proved the assertion for a total set in A(L2
R(Z)2, _). The proof

follows by a 3=-argument.8

(ii) The assertion follows by (B.3). K
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4.2. Quasi-free States: Case with +<0

Here we exhibit a class of quasi-free states which are invariant on the
CCR C*-algebra A(L2

R(Z)2, _) and mixing for the dynamics given by the
Bogoliubov automorphisms (2.3).

In order to construct quasi-free states, we start by their two-point
functions9 and we adopt the formalism developed in refs. 1 and 2 for a pure
matter of convenience (see below). In this way, it is allowed to compute
two-point functions for general complex combinations of (unbounded)
fields and conjugate momenta. In order to recover the corresponding quasi-
free state on the Weyl algebra it is enough to restrict the two-point function
to real elements.

Proposition 4.2. Let F(z) be a complex valued function which is
analytic on a neighborhood of the spectrum of 3+ and such that

(i) F(z)>0,

(ii) &zF(z)2� 1
4

when restricted to the spectrum of 3+#[&1++, +].
Then the two-point function BF (u, v) :=(u, BF v) given by

BF (u, v)=�u, \F(3+) 1
0

0
&1 &13+F(3+)+ v� (4.2)

leads to a quasi-free state, invariant for :+, 0
t , on the CCR C*-algebra

A(L2
R(Z)2, _).

Proof. We give only a brief sketch of the proof since it follows a well
known strategy. It is convenient to adopt the formalism developed by
Araki.(1, 2)

One considers the self -dual CCR algebra A(L2(&1, 1)2, C� , #). The
antilinear operator C� :=C�C is the natural conjugation (see (3.1)) for the
phase-space L2(&1, 1)2 and the bilinear form #=2i_.

By using Proposition 3.1 it is straightforward to verify that the
modified two point function

B� F (u, v)=�u, \
F(3+) 1

&
i
2

I

i
2

I

&1 &13+F(3+)+ v�
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free state | is uniquely determined, on the CCR algebra, by

|(W(v))=e&(1�2) B(v, v)



satisfies all the conditions contained in ref. 1. Restricting the two point
function B� F& 1

2 # to the CCR C*-algebra A(L2
R(Z)2, _) we obtain the two

point function BF defined in (4.2) satisfying all the conditions given in
ref. 38, p. 173. K

We now analyze the mixing properties of the quasi-free states on the
CCR-algebra A(L2

R(Z)2, _) given by the above two-point function.

Proposition 4.3. Let |F be the quasi-free state on the CCR
C*-algebra A(L2

R(Z)2, _) given by the two-point function (4.2) relative to
the analytic function F.

Then (A(L2
R(Z)2, _), : +, 0, |F ) is a mixing QDS.

Proof. The proof proceeds as the part (i) of Proposition 4.1.
By density it is enough to compute

lim
t � \�

|F (W(u) W(T +
t v))

for u, v # L2
R(Z)2. We get

|F (W(u) W(T +
t v))

=e&_(u, T +
t v)|F (W(u+T +

t v))

=|F (W(u)) |F (W(v)) e&(i_(u, T +
t v)+(1�2)(u, BF T +

t v) )+(1�2)(v, BF T +
&t u) )

Taking into account Proposition B.2 we obtain, after an elementary
change of variable,

(u, BFT +
t v)= :

2

m, j=1
|

- 1&+

- &+
F(&!2) amj (!t) fmj(!) r(S� u)m, (Sv) j (&(!2++)) ! d!

where amj (!t) are the cosine function for the diagonal elements and the sine
function for the off-diagonal elements, whereas fmj (!) are all bounded (the
linear maps S, S� are as in (4.1)). The proof easily follows from (B.2) by
Riemann�Lebesgue lemma. K

Remark 4.4. For the sake of completeness, we remark that, on the
CCR C*-algebra A(W 2

R(Z)2, _), quasi-free states given by unbounded
functional calculi of the operator 3+ can also be defined. These quasi-free
states leads to QDSs which are mixing as well.

For this generalization see Proposition 4.5 and Proposition 4.6.
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4.3. Quasi-free States: Case with +=0

Now we describe quasi-free states on the CCR algebra in presence of
infrared divergence, that is when +=0. In this case, condition (ii) of
Proposition 4.2 contradicts the hypothesis that F be analytic in a neighbor-
hood of [&1, 0]. To overcome this difficulty, we need weaker conditions
than those contained in Proposition 4.2. This can be done by paying the
price of restricting the CCR C*-algebra to be A(W 2

R(Z)2, _).

Proposition 4.5. Let F(z) be a complex valued function, analytic
on a neighborhood of [&1, 0), which satisfies

(i) F(z)>0 on [&1, 0),

(ii) &zF(z)2� 1
4 on [&1, 0),

(iii) �0
&1 dx - &x F(x)<+�.

Then the two-point function given by

BF (u, v) :=
1
? |

0

&1
dx F(x)[ru1, 1v1(x)&xr1 &1u2, v2(x)]

gives rise to a quasi-free state |F on the CCR C*-algebra A(W 2
R(Z)2, _)

which is invariant for the dynamics :0, 0
t .

Furthermore, (A(W 2
R(Z)2, _), :0, 0, |F ) is a QDS.

Proof. We report only a sketch of the proof and leave the details to
the reader.

Thanks to the conditions (i)�(iii), the above two-point function is well
defined (i.e., finite) and satisfies on (W 2

R(Z)2, _) all conditions of p. 173 of
ref. 38. So it defines a regular quasi-free state on A(W 2

R(Z)2, _).
In order to prove the invariance property, it is enough to prove it for

the Weyl operators. But this easily follows taking into account that BF

arises also from a (unbounded) functional calculus of 3, see Proposition B.2.10

Concerning the last assertion, by invariance it is enough to show that,
for u, v # W 2

R(Z)2, the function t � BF (u, Ttv) is continuous. But this is a
simple consequence of condition (iii) by the application of Lebesgue
dominated convergence theorem. K
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10 One could exhibit a more direct proof of this fact as, by condition (iii),

BF (Ttu, Tt v)= lim
+ � 0& �T +

t u, \F(3+) 1
0

0
&1 13+F(3+)+ T +

t v�
The assertion now follows by Lebesgue dominated convergence theorem taking into

account the invariance property of the r.h.s.



We now analyze the mixing properties of quasi-free states described, in
presence of infrared divergence, by Proposition 4.5.

Proposition 4.6. Suppose that F satisfies the properties of Propo-
sition 4.5.

Then the QDS (A(W 2
R(Z)2, _), :00, |F ) is mixing.

Proof. The proof follows the one in Proposition 4.3 using, at the end,
estimate (B.3) and taking into account condition (iii) of Proposition 4.5. K

4.4. The KMS States

Here we check the temperature states for our model making a distinc-
tion between the case +<0 and the case +=0 where infrared divergences
are present. We adopt, for the KMS boundary condition, the definition
contained in ref. 37, p. 133.

We fix our attention on the complex function

F+, ;(z) :=
coth((;�2) - &(z++))

- &(z++)

where the square root is defined according to Appendix A.

Proposition 4.7. Let +�0, ;>0 be fixed and consider the two-
point function

B+, ;(u, v) :=
1
? |

0

&1
dx F+, ;(x)[ru1, 1v1(x)&(x++) r1 &1 u2, v2(x)] (4.3)

(i) If +<0 and u, v # L2(Z)2, then the two-pointfunction (4.3) gives
rise to a KMS state |+, ; at the inverse temperature ; for the CCR
C*-algebra A(L2

R(Z)2, _) w.r.t. the dynamics :+, 0
t .

(ii) If +=0 and u, v # W 2(Z)2, then the two-point function (4.3) gives
rise again to a KMS state |0, ; at the inverse temperature ; for the CCR
C*-algebra A(W 2

R(Z)2, _) w.r.t. the dynamics :0, 0
t .

Proof. It is well known that the analytical functional calculus relative
to the function

F(z)=
coth((;�2) - &z )

- &z
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gives rise a KMS state for the dynamics (2.4). This can be seen, e.g., by
computing the KMS states for finite systems (see ref. 38, Lemma 5) and
then by taking the infinite volume limit (see also ref. 22, Section 6).

(i) As RA+*I (z)=RA(z&*), a simple change of variable gives the
assertion.

(ii) The assertion follows as

|
0

&1
dx - &x F0, ;(x)<+� K

It is straightforward to verify that the complex function

F(z)=
1

- &z

leads to ground states for our systems.
We leave to the reader the proof of the following

Proposition 4.8. Let +�0 be fixed and consider the two-point
function

B+, �(u, v) :=
1
? |

0

&1
dx _ ru1, 1v1(x)

- &(x++)
+- &(x++) r1 &1u2, v2(x)& (4.4)

(i) If +<0 and u, v # L2(Z)2, then the two-point function (4.4) gives
rise to a ground state |+, � for the CCR C*-algebra A(L2

R(Z)2, _) w.r.t. the
dynamics : +, 0

t .

(ii) If +=0 and u, v # W 2(Z)2, then the two-point function (4.4) gives
rise again to a ground state |0, � for the CCR C*-algebra A(W 2

R(Z)2, _)
w.r.t. the dynamics :0, 0

t .

As an immediate corollary we have the following

Proposition 4.9. Let +<0, ; # (0, +�) _ [�]. Then both QDSs
A(L2

R(Z)2, _), : +, 0
t , |+, ;) and A(W 2, 2

R (Z)2, _), :0, 0
t , |0, ;) are mixing.

Proof. The proof is an immediate consequence of Proposition 4.3
and Proposition 4.6 respectively. K
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5. THE NONLINEAR CASE

In this chapter we want to extend the results contained in the first part
of the paper to some non harmonic cases.

Namely, we would like to consider the case when some particles are
subject to a non quadratic external potential. Since the main purpose here
is to exhibit non linear models for which the ergodic properties can be
completely investigated, we will restrict ourselves to the case with a bounded
non quadratic external potential acting only on a particle, for instance the
0th-particle.

5.1. The Nonlinear Perturbation

In order to treat the time evolution in presence of a non harmonic
external potential acting on the 0th-particle, we need to enlarge the CCR
C*-algebra A under consideration since, in general, it will be no longer
invariant for the new dynamics. This is done in a standard way by con-
sidering W*-dynamical systems. Such dynamical systems arise from the
GNS construction relative to any regular state (say |) such as the quasi-
free states considered in the first part of this paper. Thus, starting by the
QDS (A, :0

t , |) with | regular, we naturally obtain a W* dynamical
system (?|(A)", :0

t ) where the linear dynamics :0
t is generated (in Heisenberg

picture) by a strongly continuous one parameter unitary group:11

?|(:0
t A)=Ut ?|(A) U &1

t

Since we consider a bounded perturbation of the dynamics according
to ref. 8, Proposition 5.4.1, for a fixed element P # ?|(A)" the perturbed
dynamics will be the unique solution of

:P
t A=:0

t A+i |
t

0
ds :P

s [P, :0
t&sA] (5.1)

where :0
t denotes the linear dynamics extended to any element A # ?|(A)".

In our case P is precisely the non quadratic part of the external potential
acting on the 0th-particle. It will be expressed in the form

P#V(q0) :=|
R

?|(W(*e0, 1)) &(d*) (5.2)
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where & is any finite complex Radon measure on R with real Fourier trans-
form. The last property translates as

& b r=&� (5.3)

where r is the mirror reflection on the real line and &� denotes the measure
obtained by complex conjugation. The above integral is understood as
an integral in the strong operator topology (or, equivalently, in the
weak operator topology, see ref. 31, Theorem IV.22) as the functions
* � ?|(W(*v)) are all bounded operator-valued functions defined on a
separable Hilbert space (see Section 4 together with ref. 3) which are con-
tinuous in the strong operator topology. Clearly, formula (5.2) is the
natural operator corresponding to the classical potential

V(x)=|
R

ei*x&(d*)

In order to study the long time behavior of the system, we start with
some preliminary computations relative to (the representative of ) the Weyl
operators ?|(W(v)). In the sequel, we drop the symbol ?| , if no ambiguity
arises.

The following calculation is the starting point of our analysis.

[P, :0
t W(v)]=|

R

&(d*)[W(*e0, 1), W(Ttv)]

=&2i |
R

&(d*) W(*e0, 1+Tt v) sin(*_(e0, 1 , Tt v))

=&2i |
R

&(d*) W(*e0, 1+Tt v) sin(*#v(t))

where

#v(t) :=_(e0, 1 , Tt v)= 1
2 (e0, 2 , Ttv) (5.4)

5.2. The Perturbed Dynamics for the Weyl Operators

We begin by studying the dynamics restricting ourselves to (the repre-
sentative of ) the Weyl operators W(v).
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Taking into account the above computations and (5.1), the non linear
dynamics on the Weyl operators satisfies the equation

:P
t W(v)=W(Tt v)+|

t

0
ds |

R

&(d*) :P
s W(*e0, 1+Tt&s v) g(v, t&s, *) (5.5)

where

g(v, s, *) :=2 sin(*#v(s)) (5.6)

Setting t
�
n :=(tn ,..., t1) and *

�
n :=(*n ,..., *1), let us consider the series

given by

Xt(v)=W(Ttv)+ :
�

n=1
|

t

0
dtn |

tn

0
dtn&1 } } } |

t2

0
dt1

_|
Rn

&(d*1) } } } &(d*n) W(wn(v, t, t
�
n, *

�
n)) Gn(v, t, t

�
n, *

�
n) (5.7)

where

w0(v, t) :=Tt v

wn+1(v, t, t
�
n+1, *

�
n+1) :=wn(*n+1 e0, 1+Tt&tn+1

v, tn+1 , t
�
n, *

�
n),

G0 :=1

Gn+1(v, t, t
�
n+1, *

�
n+1) :=Gn(*n+1 e0, 1+Tt&tn+1

v, tn+1 , t
�
n, *

�
n)

_g(v, t&tn+1 , *n+1)

Proposition 5.1. The series given in (5.7) is norm-absolutely sum-
mable on bounded sets of R and describes the non linear time evolution for
all Weyl operators.12

Namely, if v # (W 2
R(Z)2, _), then

Xt(v)=:P
t ?|(W(v))

Proof. We start by recalling that, if we have a bounded function

* # X � A(*) # B(H)
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the series (5.7) defines the nonlinear time evolution for each v # L2
R(Z)2. This could lead to

a slight generalization of some of the results in the sequel. To simplify matters we will not
indulge on such a subtlety.



between a _-finite measure space (X, +) and the set of all bounded linear
operators on a separable Hilbert space H, which is measurable w.r.t. the
Borel field generated by the strong operator topology, it is a standard
result that

"|X
A(*) +(d*)"�|

X
&A(*)& |+| (d*)

Since, for states | here considered, H| is separable (see ref. 3), we have
&W(v)&=1, &Gn&��2n and

&Xt(v)&�1+ :
�

n=1

(2 |&| (R))n |
|t|

0
dtn } } } |

|t2 |

0
dt1

= :
�

n=0

(2 |t| &&&)n

n!
=e2 |t| &&& (5.8)

As the serie is norm-absolutely summable, the proof now follows by sub-
stituting (5.7) in (5.5) having taken into account the unicity of the solution
of (5.5) (see ref. 8). K

By induction it is easy to verify that

wn(v, t, t
�
n, *

�
n)= :

n

k=1

*k Ttk+1
e0, 1+Ttv,

Gn(v, t, t
�
n, *

�
n)= g(v, t&tn , *n) (5.9)

_ `
n&1

k=1

g \T&tk+1 _ :
n

j=k+1

Ttj
e0, 1+Tt v& , tk+1&tk , *k+

As a final remark let us notice that, using formulae (5.9) and the
change of variables sk=t&tk , the dynamics can be expressed in the more
convenient form

:t(W(v))=W(Ttv)+ :
�

n=1
|

t

0
dtn |

t

tn

dtn&1 } } } |
t

t2

dt1 (5.10)

_|
Rn

&(d*1) } } } &(d*n) W(Ttŵn(v, t
�
n, *

�
n)) G� n(v, t

�
n, *

�
n) (5.11)
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where, in the above formula,

ŵn(v, t
�
n, *

�
n)=T&t wn(v, t, t&t1 ,..., t&tn , *

�
n)

# :
n

k=1

*kT&tk
e0, 1+v (5.12)

G� n(v, t
�
n, *

�
n)=Gn(v, t, t&t1 ,..., t&tn , *

�
n)

#2n `
n

k=1

sin \*k

2 �e0, 2 , :
n

j=k+1

*jT(tk&tj )e0, 1+Ttk
v�+ (5.13)

We conclude by noticing that ŵn , as well as G� n , do not depend on t.

6. CONVERGENCE TO THE EQUILIBRIUM

In this section we investigate the long time behavior of dynamical
systems arising from the construction of the previous section. We begin by
specifying the set of states we are interested in.

We consider states | on A(W 2
R(Z)2, _) such that the GNS representa-

tion ?| acts on a separable Hilbert space H| . We suppose also that the
function

v # W 2
R(Z)2 � ?|(W(v)) # U(H|)

is a Borel one, when the unitary group U(H|) is equipped with the weak
(or equivalently the strong) operator topology.

We note that all quasi-free states considered in the sequel satisfy the
above conditions, see Proposition B.2, having taken into account that the
Hilbert space H| of the GNS construction relative to such | is separable.(3)

In this case, as both functions * � ?|(W(*v)) and t � ?|(W(Tt v)) are
Borel, hence continuous,13 the state | is regular and the dynamical system
A(W 2

R(Z)2, _), :0
t , |) is indeed a QDS according to the definition con-

tained in the introduction.
We assume that | is invariant w.r.t. :0

t , even though part of our
analysis applies also to non invariant states.
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13 It is straightforward to show that, under the above conditions, the function v � ?|(W(v))
is indeed continuous, when the unitary group U(H|) is equipped with the weak operator-
topology (see ref. 27, Proposition 5), as the canonical commutation relation can be easily
enlarged to a continuous group operation on the Polish space W 2

R(Z)2_T in order to
obtain the so called Weyl�Heisemberg group.



Finally, for reasons which will appear clear below, we deal only with
the CCR algebra A(W 2

R(Z)2, _). In fact, if +<0 (that is without infrared
divergences), our analysis applies to the (larger) CCR algebra A(W 1

R(Z)2, _)
see Propositions 4.1 and 4.3 together with Lemma B.3.

Under the above conditions, the analysis developed in Section 5
applies.

We consider, on the representation relative to the fixed state |, the
dynamics :P

t arising from the non linear perturbation (5.2) where the
measure & satisfies

I&I :=sup
n # N

1
(n&1)! |

R

|&| (d*) |*| n<
1

2 &#e0, 1
&1

(6.1)

if it is not otherwise specified.
For a bounded measure & on the real line, the seminorm defined in

(6.1) is finite if and only if the potential V can be extended to an analytic
complex function on the open strip of size 1 around the real axis. One
could consider more general situations by introducing the norms

I&I% :=|
R

e |*| % |&| (d*)

These norms allow us to treat potentials analytic in an arbitrarily
small strip around the real axis, provided they are small enough; we choose
not to indulge on this generalization in order to simplify the exposition. At
the moment it is unclear what can be said in general for non analytic
potentials.

6.1. The C*-Algebra Generated by Measures

In order to study the asymptotic properties of the systems at hand we
note that the W*-algebra ?|(A(W 2

R(Z)2, _))" turns out to be too large.
However we can deal with a suitable C*-subalgebra M|/?|(A(W 2

R(Z)2, _))"
which is large enough to be invariant with respect to the non linear
dynamics and to contain all relevant observables (i.e., all Weyl operators),
but sufficiently small to allow uniform estimates in time.

We start with triples m :=(m, h, +) where m # N, h: Rm � W 2
R(Z)2 is a

Borel function and + is a ``suitable'' complex measure on Rm.
More precisely, given the set

M :={(m, h, +) } _=>0 : |
Rm

e= &h(x)&W 2(Z)2 |+| (dx)<�=
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we can define, for each m=(m, h, +) # M,

W(m)=|
R m

?|(W(h(x)) +(dx)

where the integrals are meant w.r.t the strong (equivalently weak) operator
topology on ?|(A(W 2

R(Z)2, _))". Next, we consider the following linear set
of operators14

M| :=span {|Rm
?|(W(h(x))) +(dx); m # M=

Lemma 6.1. M| is a *-subalgebra of ?|(A(W 2
R(Z)2, _))".

Proof. The closure w.r.t. the sum is trivial. The adjoint follows since
it is easy to check that

_|R n
W(h(x)) +(dx)&*

=|
Rn

W(&h(x)) +� (dx)

where +� is the complex conjugate of the measure +. The closure w.r.t. the
product easily follows from Fubini Theorem. Indeed

_|Rm
W(h1(x)) d+1(x)& _|Rn

W(h2(x)) d+2(x)&
=|

Rn+m
W(h1(x)+h2( y)) d+3(x, y)

where d+3(x, y)=e&i_(h1(x), h2( y)) d+1(x) d+2( y). K

Let now M| be the C*-algebra generated by M| .

Proposition 6.2. M| is globally stable for the one-parameter
group of automorphisms :P

t of B(H|).
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considered, see e.g., ref. 20. However, it may be possible to consider a slightly larger
C*-algebra by allowing directly measures on W 2(Z)2. Nevertheless, this would entail
several technical problems without adding much to the present results. Thus we have
chosen not to pursue such a generalization.



Proof. Let � W(h(x)) d+(x) # M| , then

:P
t | W(h(x)) d+(x)=| :P

t W(h(x)) d+(x)

= :
�

n=0
| W(wn(h(x), t, t

�
n, *

�
n)) Gn(h(x), t, t

�
n, *

�
n)

since, by estimate (5.8), the series converges in norm. Now, the nth element
of the series is defined by h� (x, t

�
n, *

�
n) :=wn(h(x), t, t

�
n, *

�
n) together with the

measure (except a sign when t<0)

d+~ :=/2 n
t
(t
�
n) Gn(h(x), t, t

�
n, *

�
n) d+(x) d&(*1) } } } d&(*n) dt1 } } } dtn

where 2n
t =[(t1 ,..., tn) # Rn | t�t1� } } } �tn�0].

Since Tt is continuous as an operator from W 2(Z)2 to itself, it follows
by (5.12) that there exists ct such that &h� &W 2�ct[&h&W 2+�n

i=1 |* i |].
Thus, since � e= &h& d+<� for some =>0, setting =1=min[=c&1

t , 1
2]

� e=1 &h� &W 2 d+~ <�, that is (2n+m, h� , +~ ) # M. Namely, the above series is
made of elements of M| and converges in norm so it defines an element
of M| .

The statement follows by usual density arguments. K

Next, we show that the Mo% ller morphisms(8) exist also in our situa-
tions. Even though this fact is not needed in the sequel, we report it for the
sake of completeness.

We start by defining on M|

#|, P
t (A) :=:P

&t:
0
t A

Only in this case we assume that the measure & satisfies the weaker
condition

|
R

|*| |&| (d*)<�

instead of condition (6.1).

Theorem 6.3. Both limits

lim
t � \�

#|, P
t (A) :=#|, P

\ (A)

exist pointwise in the norm topology of M| .
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Proof. Suppose that |s|<|t|. By (5.1) we obtain

&#|, P
t (A)&#|, P

s (A)&�|
|t|

|s|
d{ &[P, :0

t A]& (6.2)

We note that it is enough to prove the statement for the generators
[W(m)]m # M of M| and, in this case, formula (6.2) reads

&#|, P
t (W(m))&#|, P

s (W(m))&

�2 |
|t|

|s|
d{ _|R m+1

|&| (d*) |+| (dx) sin |*#h(x)({)|& (6.3)

As, by Lemma B.3,

|
R m+2

sin |*#h(x)(t)| |&| (d*) |+| (dx) dt

�|
Rm+2

|*| |#h(x)(t)| |&| (d*) |+| (dx) dt

�c1 |
R

|*| |&| (d*) |
R m

&h(x)&W 2(Z)2 |+| (dx)

�
c1

e= |
R

|*| |&| (d*) |
R m

e= &h(x)&W 2(Z)2 |+| (dx)

(where = depends on + according to the definition of m), we conclude, by
Fubini Theorem, that the function

f (t) :=|
R m+1

sin |*#h(x)(t)| |&| (d*) |+| (dx)

is summable. The assertion now follows since f (t) is precisely the integrand
of the r.h.s. of (6.3). K

6.2. Asymptotic Abelianess

Here we check the properties of asymptotic abelianess for the dynamical
system (M| , :P

t ).

Theorem 6.4. The dynamical system (M| , :P
t ) is asymptotically

abelian.
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Proof. By density and Lebesgue dominated convergence theorem, it
is enough to check that

lim
t � \�

[W(u), :P
t W(v)]=0

for any choice of elements u, v # W 2
R(Z)2. Using formula (5.11) for the time

evolution of the Weyl operators and Lemma C.1, by Lebesgue dominate
convergence theorem we can exchange the limit with the summation. The
proof follows provided that

lim
t � \�

[W(u), W(Tt ŵn(v, t
�
n, *

�
n))]=0

for each n # N pointwise w.r.t. t
�
n and *

�
n. But this follows as

lim
t � \�

_ \u, Tt \ :
n

k=1

*k T&tk
e0, 1+v++=0 K

In order to study the asymptotic behavior of dynamical systems, we
remark the following simple fact.

Consider a state . in the folium F| .15 Such a state is given (possibly
in a non unique manner) by a density matrix on the Hilbert space H| of
the GNS triple relative to |.

Remark 6.5. If the dynamical system (A(W 2
R(Z)2, _), :0

t ) is asymp-
totically abelian and | is mixing, then

lim
t � \�

.(:0
t A)=|(A) (6.4)

for each A # A(W 2
R(Z)2, _).

6.3. Long-Time Behavior

Let us start by fixing some notations.
Recalling the definition (5.12) and (5.13) for ŵ and G� respectively, we

define

a\
n (v) :=|

\�

0
dtn |

\�

tn

dtn&1 } } } |
\�

t2

dt1 |
Rn

&(d*n) } } } &(d*1)

_|(W(ŵn(v, t
�
n, *

�
n))) G� n(v, t

�
n, *

�
n) (6.5)

for each v # W 2
R(Z)2, n # N and a\

0 (v)=|(W(v)).
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We have the following

Theorem 6.6. Let | be any invariant state on the CCR C*-algebra
A(W 2

R(Z)2, _) such as those defined in the beginning of Section 6, extended
in the obvious manner to all of M| .

If & satisfies (6.1), then both limits

lim
t � \�

| b :P
t :=|\

exist in the _(M*| , M|)-topology.
We have an explicit expression for any generator W(m) as

|\(W(m))= :
�

n=0
|

R m
a\

n (h(x)) +(dx)

=|
Rm

|\(W(h(x))) +(dx)

where a\
n is defined in (6.5).

Moreover, if : is mixing w.r.t. the linear dynamics, then we have, again
in the _(M*| , M|)-topology,

lim
t � \�

. b :P
t =|\

for each state . # F| .

Proof. As the unit ball of M*| , is compact in the weak*-topology, it
is enough to show that the assertion holds for any generator W(m).

Starting from the serie (5.7) and exchanging the summation with
integration we get, by Fubini Theorem,

|(:P
t W(m))= lim

t � \�
:

+�

n=0

(\1)n

_|
2n

t_R m+n
|(W(ŵn(h(x), t

�
n, *

�
n)) G� n(ŵn(h(x), t

�
n, *

�
n))

where 2n
t =[(t1 ,..., tn) # Rn | \t�\t1� } } } �\tn�0]. Next, letting n # N.

be sufficiently large and choosing s # ( 2
3 , 1) according to Lemma B.3, we

have, by Lemma C.1,
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|
2 n

t_Rm+n
||(W(ŵn(h(x), t

�
n, *

�
n)) G� n(ŵn(h(x), t

�
n, *

�
n))|

�(l I&I &#e0, 1
&1)n |

Rm
ec &h(x)&s

W 2 (Z)2 |+| (dx)

�C=(l I&I &#e0, 1
&1)n |

R m
e= &h(x)&W 2 (Z)2 |+| (dx)

for each l>2 provided l I&I &#e0, 1
&1<1.

The proof now follows easily by Lebesgue dominate convergence
theorem and, if | is mixing w.r.t. the linear dynamics, taking into account
(6.4). K

Corollary 6.7. The states |\ are invariant w.r.t. the evolution :P
t

and are regular when restricted to the CCR C*-algebra A(W 2
R(Z)2, _).

Proof. The invariance is immediate by the above result since |\(:P
t A)

=lims � \� |(:P
t+s A)=|\(A).

The regularity follows for the serie defining |\(W(v)) converges
uniformly on bounded sets of W 2

R(Z)2 and a\
n (*v) are continuous in * by

Lebesgue dominated convergence theorem. K

It remains to investigate the unicity of the limiting state. The argument
we use here may seem a bit indirect, yet it is the only available given that,
in general, we do not know if |\ are normal w.r.t. |.

We begin our analysis with the following

Lemma 6.8. For each v # W 2
R(Z)2 we have

lim
t � �

|\(W(Tt v))=|(W(v))

Proof. Theorem 6.6 yields

lim
t � �

|\(W(Tt v))= lim
t � �

:
�

n=0

a\
n (Tt v)

where a\
n are defined in (6.5). Remembering Lemma C.1, we can exchange

the limit with the integration. By Riemann�Lebesgue Lemma, we get
limt � � a\

n (Ttv)=0 for each n>0 and the result follows. K

The next result is the key to our approach to the identification of
limiting states.
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Lemma 6.9. Let . # [|&, |+]. Then . satisfies the following
integral equation:

.(W(v))=|(W(v))+|
+�

0
ds |

R

&(d*) .(W(*e0, 1+Tsv)) g(v, s, *) (6.6)

Moreover, if | is mixing w.r.t. the linear dynamics :0
t and . # F| is

any invariant state w.r.t. the non linear dynamics :P
t , then . satisfies also

the integral equation (6.6).16

Proof. By Theorem 6.6 it follows

.(W(v))=.(:P
t W(v))

=.(:0
t W(v))+. \|

t

0
ds |

R

&(d*) :P
s (W*e0, 1+Tt&sv) g(v, t&s, *)+

=.(:0
t W(v))+|

t

0
ds |

R

&(d*) .(W(*e0, 1+Tt&s v)) g(v, t&s, *)

=.(:0
t W(v))+|

t

0
ds |

R

&(d*) .(W(*e0, 1+Ts v)) g(v, s, *)

due to invariance of |\ w.r.t. :P
t . Taking the limit for t � +� in the

above equation we obtain the assertion by Lemma 6.8.
Now, if . is any invariant state in F| we again obtain the assertion

if | is mixing w.r.t. :0
t , see Remark 6.5. K

The following theorem is the announced result on the equality of limit
states.

Theorem 6.10. On the C*-algebra M| , we have

|+=|& =: |�

Moreover, if there exists a state . # F| , invariant w.r.t. the time evolu-
tion :P

t , then .=|� .

Proof. It is enough to verify the assertion for the (representative of
the) Weyl operators.
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We start by considering the linear spaces B(W 2
R(Z)2) (Bloc(W 2

R(Z)2))
made of Borel bounded (locally bounded) complex valued functions
together with the (not everywhere defined) linear map F: Bloc(W 2

R(Z)2) �
Bloc(W 2

R(Z)2) given by

F( f )(v) :=|
+�

0
ds |

R

&(d*) f (*e0, 1+Tsv) g(v, s, *)

It is immediate to show that F maps B(W 2
R(Z)2) in Bloc(W 2

R(Z)2). In
addition, from Lemma C.1 it follows that F n is well defined on B(W 2

R(Z)2).
Indeed, we have the estimate

|F n( f )(v)|�(2 I&I &#e0, 1
&)n exp { &#v &1

2s &#e0, 1
&1= c(n ln ln n)�(ln n) & f &� (6.7)

for each f # B(W 2
R(Z)2).

Accordingly, Eq. (6.6) can be written as

f =f0+F( f ) (6.8)

where f0(v)=|(W(v)) and f (v)=.(W(v)) since, in our situation, both
functions belong to B(W 2

R(Z)2). Hence, we will analyze the bounded solu-
tions of the fixed point equation (6.8) when f0 is bounded.

If f is a solution of (6.8), then f satisfies also the following sequence
of equations

f = :
n

k=0

F k( f0)+F n+1( f ) (6.9)

From the estimate (6.7), it follows that we can take the pointwise limit
in (6.9) obtaining that each solution of (6.8) reads

f (v)= :
�

k=0

F k( f0)(v) (6.10)

uniformly on bounded sets of W 2
R(Z)2. On the other hand it is trivial to see

that (6.10) is a solution of (6.8). Thus equation (6.8) has the unique solu-
tion given by (6.10). K

The following theorem is one of the main results of this section.

Theorem 6.11. Let the QDS (A(W 2
R(Z)2, _), :0

t , |) be mixing.
Then the QDS (M| , :P

t , |�) is mixing as well.
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Proof. Clearly it suffices to check the mixing on the Weyl operators.
We start by noticing that |�(W(u) :P

t W(v)) is given by an absolutely
summable double serie whose summands can be chosen indifferently
(Theorem 6.10) as

a\
m, n(t)=|

2\�_Rm |
2t_Rn

|(W(ŵm(u, t
�
m, *

�
m)) W(Tt ŵn(v, t

�
~ n, *

�
� n)))

_G� m(u, t
�
m, *

�
m) G� n(v, t

�
~ n, *

�
� n)

Now we apply Lebesgue dominated convergence theorem and obtain

lim
t � \�

a\
m, n(t)=|

2\�_Rm |
2\�_R n

|(W(ŵm(u, t
�
m, *

�
m))) |(W(ŵn(v, t

�
~ n, *

�
� n)))

_G� m(u, t
�
m, *

�
m) G� n(v, t

�
~ n, *

�
� n)

#a\
m (u) a\

n (v)

taking into account that

lim
t � \�

|(W(ŵm(u, t
�
m, *

�
m)) W(Ttŵn(v, t

�
~ n, *

�
� n)))

=|(W(ŵm(u, t
�
m, *

�
m))) |(W(ŵn(v, t

�
~ n, *� n)))

pointwise, due to the mixing property of |.
Finally,

lim
t � \�

|�(W(u) :P
t W(v))= lim

t � \�
:

+�

m, n=0

a\
m, n(t)

= :
+�

m, n=0

lim
t � \�

a\
m, n(t)

= :
+�

m, n=0

a\
m (u) a\

n (v)

#|�(W(u)) |�(W(v)) K

We conclude our analysis on the long time behavior of quantum
systems arising by nonlinear perturbations of the dynamics with some con-
siderations about relative normality between | and |� , both regarded as
states on M| . In general we cannot give any answer to this interesting
problem. Conversely, for KMS states, we have a full understanding of the
situation, at least for sufficiently small perturbations. We would like to
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remark that a time-dependent perturbation theory for KMS states seems to
be absent in the literature relatively to the case under consideration, as the
dynamical system (M| , :P

t ) is never a C*-dynamical system and the mixing
property (w.r.t. the unperturbed dynamics) for the states | considered here
seems to be not satisfied for all observables in the von Neumann algebra
?|(A(W 2

R(Z)2, _))", see below.
We recall the definition of mutually normal according to ref. 36,

Chap. III.
Let |i , i=1, 2 be two states of a C*-algebra A with GNS representa-

tions ?i , i=1, 2 respectively. Then |2 is normal w.r.t. |1 if there exists a
normal homomorphism \ of ?1(A)" onto ?2(A)" such that

\ b ?1=?2

In the abelian case, this definition corresponds to the fact that the
Borel measure +2 on the spectrum of A, which describe the state |2 , is
absolutely continuous w.r.t the measure +1 , relative to the state |1 .

We have the following

Proposition 6.12. The limit state |� , when restricted to the CCR
C*-algebra A(W 2(Z)2, _), is locally normal w.r.t. the local structure deter-
mined by all finite dimensional symplectic subspaces of W 2

R(Z)2.

Proof. This is nothing but the von Neumann uniqueness theorem,
see, e.g., ref. 8, Corollary 5.2.15, provided that the state |� , when restricted
to the CCR C*-algebra A(W 2(Z)2, _), is regular. But the last assertion is
contained in Corollary 6.7. K

6.4. The Convergence to the Equilibrium for KMS States

In the case of KMS states, it is possible to have a more explicit
description of the state, thanks to the time independent perturbation
theory.(8) To explain these facts we fix our attention on the two W*-dynami-
cal systems (M, :0

t ), (M, :P
t ) where M=?|;

(W 2(Z)2, _))"#M"| ; |; is one
of the ;-KMS state introduced in Section 4.4.

Let 0P
; be the vector given in ref. 8, Corollary 5.4.5 relative to 0;

(|;(A) :=(0; , ?|;
(A) 0;) ).

We start with the following

Proposition 6.13. If the QDS (A(W 2(Z)2, _), :0
t , |;) is mixing,

then

|P
;(A) :=(0P

; , ?|;
(A) 0P

; )
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is the unique ;-KMS state of M| in the sector determined by the defining
representation of M| . It is a faithful factor state.

Proof. As | is mixing we can conclude, by the mean ergodic
theorem, that 0; is the unique (up to a multiplicative constant) vector
which is invariant for the unitary group eiHt which implements the linear
dynamics, see ref. 21, Theorem 2.1. Then M 7 M$=CI by ref. 8, Proposi-
tion 5.3.29. So we again conclude that |P

; is the unique KMS normal state
on M for the perturbed dynamics :P

t . Moreover |P
; is faithful (ref. 8,

Theorem 5.3.10). K

We collect the results about the KMS states in the following

Theorem 6.14. Let |; be any KMS state at inverse temperature ;
for the QDS (A(W 2(Z)2, _), :0

t , |;) among those analyzed in the sequel
and considered as a (vector) state on all of M|;

.
Then,

lim
t � \�

|; b :P
t =|P

;

where |P
; is precisely the state given in ref. 8, Corollary 5.4.5.

Moreover, |P
; is mixing on M|;

w.r.t the non linear dynamics :P
t .

Proof. The proof consists of the previous results (Theorem 6.10
together with Theorem 6.11) specialized to the particular cases of KMS
states. K

Another situation which is covered by our analysis is the time dependent
theory for ground states relative to non linear perturbation of the dynamics.

Namely, relatively to ground states |� introduced in Proposition 4.8,
we have that |� b :0

t converges, as t � \�, to a unique state |�, � .
Unfortunately, it is unclear if |�, � is also a ground state on M| for the
perturbed dynamics.

Let us conclude the section with few open questions. A natural ques-
tion arises if one considers mixing ;-KMS states together with nonlinear
perturbations

P :=|
R

?|;
(W(*e0, 1)) &(d*)

with conditions only on |&| (R) and no conditions on higher momenta of
the measure &. In this case, in order to conclude that

lim
t � \�

|; b :P
t =|P

;
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it could seem natural to proceed in analogy with the arguments contained
in ref. 8, Proposition 5.4.13. Unfortunately, in order to argue along such
lines, a stronger condition on clustering is required, that is strong cluster-
ing on all elements of the associated W*-algebra, which seems not to be
available in the present setting. More in general it would be very interesting
to develop a non-perturbative approach to the questions treated in this
paper.

Last we would like to remark that, if one considers quantum harmonic
crystals in higher dimensions, then non mixing quasi free KMS could arise
as a Bose condensation of phonon could take place, see ref. 8, Section 5.2.
In this case we could not conclude that the limiting state is a KMS state
relative to the non linear dynamics.

APPENDIX A

In this appendix we perform some necessary but standard and boring
computations.

We start by considering, for z � [&1, 0] and k # Z, the following func-
tions

fk(z) :=
1
2 |

1

&1

eik?x

|(x)&z
dx (A.1)

where |(x)=(cos ?x&1)�2. We note that fk is even w.r.t. k. In order to
compute the above sequences of functions, it is necessary to study the zeros
of the polynomial

P(`) :=`2&2(1+2z) `+1

as we will see below. P(`) is equal to zero for

`\=e\'

where 2(1+2z) :=e'+e&'; '=:+i; with :�0 and ; # [0, 2?). Or, in
alternative,

`\=1+2z\- (1+2z)2&1 (A.2)

where the square root is defined with the cut [&1, 0] and with the sign
chosen according to the preceding definition (that is, the root is positive for
z # R+). It follows that |`\ |=1 if and only if :=0, but this implies
Im(1+2z)=0 and |Re(1+2z)|�1. That is z # [&1, 0], which is excluded
by hypothesis. Hence, `& will always lay inside the unit circle.
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Now we are ready to prove the following

Lemma A.1. For z � [&1, 0] and k # Z we have

fk(z)=&
2`&(z) |k|

- (1+2z)2&1

Proof. As fk is even in k, we restrict ourselves to k�0. After an
elementary change of variable we get

fk(z)=
2
?i |

|`|=1

`k

`2&2(1+2z) `+1
d`

where the unit circle is counterclockwise oriented. Now the denominator
can be written as

P(`)=(`&`+(z))(`&`&(z))

So, by the above analysis, the integrand has only a simple pole
`=`&(z) inside the unit circle. The proof now follows by the Residue
Formula. K

Taking into account

1
2 |

1

&1

eik?x

|(x)&z
|(x) dx=$k, 0+zfk(z) (A.3)

and

1
2 |

1

&1

\+a|(x)
|(x)&z

dx=a&
2(\+az)

- (1+2z)2&1

it follows that the function $(z), defined in (3.5), reads as (3.7). It has a
pole if

1&a&4
\+az

`&&`+

=0

that is

(1&a)(`&&`+)=4\&2a+a(`&+`+) (A.4)
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which implies

(1&2a) `&&`+=2(2\&a)

Since `\=e\(:+i;) remembering that a=1&1�M<1, it is easy to see
that the imaginary part of the above equation is satisfied only if sin ;=0.
This implies that both `\ , and z must be real; in addition cos ; # [&1, 1].

If cos ;=1, then `\=e\: and

1+2z#cosh :�1

implies z�0. Accordingly, (A.4) reads

sinh :=&2
\+az
1&a

(A.5)

Since, for z�0, we have sinh :=- 4z2+4z�2z if M<1, hence \�0,
the r.h.s. of (A.5) reads

&
2\

1&a
+2(1&M ) z<2(1&M ) z<2z

so (A.5) has a no solutions. If, on the other hand M�1, Eq. (A.5) has a
solution iff \�0, that is iff M�1&K�+.

If cos ;=&1, then `\=&e\: and

&(1+2z)#cosh :�1

implies z�&1. Using again (A.4), we have

sinh :=2
\+az
1&a

(A.6)

The above equation has always a solution if M<1, while if M�1,
Eq. (A.6) has a solution iff

M�1+
K

1&+

In other words $(z) has no poles outside the interval [&1, 0] iff
1+K�(1&+)<M<1&K�+; we will always assume such an inequality in
the rest of this appendix.
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Now we compute, according to the preceding lemma, all the matrix
elements which we will need in the sequel. Namely, setting

ek(x) :=ei?kx

we define (R(z) :=R3 (z), see (3.6))

Rkl (z) :=(ek , R(z) el)

The following contour integrals

1
2?i |

#c

F(z) Rkl (z) dz

allow us to compute all the matrix elements of the operator F(3) when F
is analytic in a neighborhood of [&1, 0].

Lemma A.2. For z # C"[&1, 0], we have

Rkl (z)= fk&l (z)&$(z) fk(z)[(\+az) f l (z)+a$l, 0]

Proof. Taking into account formulae (3.6) and (A.1) for R(z) and fk

respectively, the assertion follows easily by (A.3). K

An easy but tedious calculation yields the next lemma.

Lemma A.3. Let F be an analytic function on a neighborhood of
[&1, 0] and assume 1+K�(1&+)<M<1&K�+. Then

&
1

2?i |
#c

F(z) Rkl (z) dz=
1
? |

0

&1
dx F(x) rkl (x)

where rkl (x) is, for x # (&1, 0), the continuous function given by

rkl (x) :=
cos[|k&l | b(x)]

- &x&x2
+

1

- &x&x2 [(\+ax)2+(1&a)2 (&x&x2)]

_[(a&a2)(&x&x2) $l, 0

_cos[|k| b(x)]&(\+ax)2 cos[( |k|+|l | ) b(x)]

+(a\+a2x) - &x&x2 $l, 0 sin[|k| b(x)]

+(1&a)(\+ax) - &x&x2 sin[( |k|+|l | ) b(x)]]
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Here - &x&x2 is the arithmetic square root of &x&x2�0 and
b(x) :=arccos(1+2x).

Proof. The computation can be easily made as the contour #c

collapses on the interval [&1, 0]. Indeed, as it is well known, the square
root - (1+2z)2&1 has limits as z tends to x # [&1, 0] from above and
from below on the complex plane. These limits are (according to the defini-
tion of the square root) \2i - &x&x2 respectively. Moreover, by (A.2),
we have for x # (&1, 0)

lim
= � 0+

|`\(x\i=)|=1

so that the argument

b(x) := lim
= � 0+

;(x+i=)

coincide, on the upper side of the cut, with arc cos(1+2x) again by (A.2).
The proof now follows via a direct computation by using Lemma A.1
together with Lemma A.2, remembering the expression (3.7) of $(z) and the
discussion on the poles of $(z). In fact, all functions appearing as
integrands in the r.h.s. of the formula are summable on (&1, 0). The
integral of the functions appearing in the r.h.s. of the formula, taken on a
small circle (in the complex plane) of radius = centered on any of the
ramification points 0 and &1, are of order O(- = ) as = goes to zero. K

Remark A.4. A direct inspection of rkl (x), shows that

rkl (x)=- &x&x2 ( |k|+ |l |+1)2 r~ kl (x)

where r~ kl (x) are continuous equibounded functions on [&1, 0].
Furthermore, setting rkl (x)=0 for x � [&1, 0], rkl (x) can be extended

to an absolutely continuous function on all the real line with derivative in
L p(R) for each 1�p<2.

APPENDIX B

Following the computations contained in the previous appendix, we
investigate some relevant properties related to (possibly unbounded) func-
tional calculi for the operator 3.

We begin with the investigation of the explicit expression of et4* which
(with an abuse of notation) describes the linear dynamics on the CCR
C*-algebras (A(W n(Z)2, _).
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By Proposition 3.1 and formula (3.4), setting R(z) :=R3 (z), we get

e4*t=&
1

2?i |
#c

dz :
�

n=0

t2nzn \
1

(2n)!
1 &1R(z) 1

t
(2n+1)!

R(z) 1

tz
(2n+1)!

1 &1R(z)

1
(2n)!

R(z) +
where the integral is meant in the norm sense.

Thus, defining the entire functions (w.r.t. the variable z)

hp(z, t) := :
�

n=0

znt2n

(2n)!
; hd (z, t) := :

�

n=0

znt2n+1

(2n+1)!

we have the following representation for the one parameter group T +
t

which implements the dynamics on the phase space:

T +
t =&

1
2?i |

#c

dz \hp(z++, t) 1 &1R(z) 1
hd (z++, t) R(z) 1

(z++) hd (z++, t) 1 &1R(z)
hp(z++, t) R(z) +

(B.1)

for 3+#3++I.
Continuing our analysis, we note that, due to Lemma A.3, the func-

tions

:
k, l

u� kvl rkl (x)

have the role of the density of spectral measures, at least for finitely sup-
ported sequences. Then, if u, v are sequences with finite support, we set

ru, v(x) :=:
k, l

u� kvl rkl (x)

The following estimations is crucial in the sequel.

Proposition B.1. The following assertions hold.

(i) Let u, v # L2(Z) and [un], [vn] sequences made of elements with
finite support which converge in L2(Z) to u, v respectively. Then

ru, v(x) :=lim
n

run , vn
(x)
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uniquely defines a function in L1(&1, 0) which satisfies the following
estimate

1
? |

0

&1
|ru, v(x)| dx�C1 &u&L2(Z) &v&L2(Z) (B.2)

(ii) If u, v # W 2
R(Z), then ru, v(x)�- &x belongs to L�(&1, 0) and

satisfies

sup
x # (&1, 0)

|ru, v(x)|

- &x
�C2 &u&W 2(Z) &v&W 2(Z) (B.3)

where sup is the essential supremum on (&1, 0).

Proof. (i) If u, v are elements of L2(Z) with finite support, then
ru, v(x) is a continuous function on (&1, 0) (see Remark A.4). Now, taking
into account that 1 &1�2F(3) 1 1�2 is normal for each F analytic in a
neighborhood of (&1, 0), we have by Proposition 3.1 and Lemma A.3,

} 1? |
0

&1
dx F(x) :

k, l

u� k vl rkl (x) }=|(1 1�2u, 1 &1�2F(3) 1 1�21 &1�2v) |

�&1 1�2u&2 &1 &1�2v&2 spr(1 &1�2F(3) 1 1�2)

�
1

- 1&a
&u&2 &v&2 max

x # [&1, 0]
|F(x)|

where the last inequality follows by the Spectral Mapping Theorem and the
fact that &1 &1�2&=1�- 1&a . Now, as the analytic functions are dense in
the space of all continuous functions on [&1, 0], we have (B.2) for finite
supported sequences, with C1 :=1�- 1&a .

Finally, if u, v # L2(Z), we choose sequences [un], [vn] made of
elements with finite support which converge in L2(Z) to u, v respectively,
we get

|
0

&1
|run , vn

(x)&rum , vm
(x)| dx�|

0

&1
|run&um , vn

(x)| dx+|
0

&1
|rum , vn&vm

(x)| dx

that is, taking into account the above estimation, the sequence [run , vn
] is

a Chauchy sequence in L1(&1, 0) which converges to a function ru, v in
L1(&1, 0). At the same time one can prove that this function does not
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depend on the sequences [un], [vn] chosen in order to approximate u, v
in L2(Z). An elementary application of Fatou Lemma yields that estimate
(B.2) holds for general elements u, v of L2(Z).

(ii) Considering again finite supported sequences we have, after a
Taylor expansion near 0& of the circular functions appearing in the defini-
tion of rkl (x) (see Lemma A.3 and Remark A.4),

|ru, v(x)|

- &x
�C2 :

k

(k2+1) |uk | :
l

(l 2+1) |vl |

The assertion follows immediately by the last estimate and a simple
approximation argument in W 2(Z). K

For general elements u, v of L2(Z), we symbolically write for ru, v(x)

ru, v(x)=:
k, l

u� k vl rkl (x)

where the last formula is understood as a limit in L1(&1, 0).
As the operator 1 &1�231 1�2 is self-adjoint (see Proposition 3.1), one

can define the Borelian (possibly unbounded)17 functional calculus for 3.
Then, if F is any Borel function on R& , we set

F(3) :=1 1�2F(1 &1�231 1�2) 1 &1�2

where the domain of F(3) is determined by the domain of F(1 &1�231 1�2),
see [10, Part II]. Taking into account the above considerations, the next
proposition follows by Proposition B.1 and Lemma A.3.

Proposition B.2. The following assertions hold.

(i) If F # L�(R) and v, w # L2(Z), then

(v, F(3) w)=
1
? |

0

&1
dx F(x) rv, w(x)

1000 Fidaleo and Liverani

17 In the spirit of the following proposition, if F # L2(R& , - &x dx) and v, w # W 2
R(Z), then

v, w # Dom(F(3)) and

(1 &1F(3) 1v, F(3) w) =
1
? |

0

&1

dx |F(x)|2 rv, w(x)

Then the bilinear form Q |F | 2 of Proposition B.2 is given by

Q |F | 2(v, w)=(1 &1F(3) 1v, F(3) w)



(ii) If F # L1(R& , - &x dx) and v, w # W 2(Z), then the bilinear form
QF (v, w) is well defined by

QF (v, w) :=
1
? |

0

&1
dx F(x) rv, w(x)

In addition, it is continuous on W 2(Z)_W 2(Z).

Proof. The only non-trivial part is (ii). The difficulties is that the
above mentioned unbounded functional calculus is clearly well defined only
for F # L2(R& , - &x dx), otherwise the domain of F(3) could be too
small. Nevertheless, we are interested just in quadratic forms with domain
containing W 2(Z) which can be easily defined. Let Fn # L�(R& , - &x dx)
be a sequence converging to F in L1(R& , - &x dx). Then, for all v, w #
W 2(Z)

|(v, (Fn&Fm) w) |�
1
? \|

0

&1

dx

- &x
|Fn(x)&Fm(x)|+ &v&W 2 (Z)| &w&W 2(Z)

Thus, we have a Chauchy sequence and the natural definition

QF (v, w)= lim
n � �

(v, Fnw)

Clearly, the limit does not depend on the approximating sequence and
enjoys the representation (ii). The continuity is straightforward. K

One of the most important consequences of the previous result con-
sists in the possibility of computing relevant dynamical functions as in the
following

Lemma B.3. For each +<0, 2
3<s�1 and elements v # W 1(Z)2, the

s-powers of the functions

# +
v (t) :=(v, eA+ te0, 2)

are summable on the real line; furthermore

lim
t � �

# +
v (t)=0
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In addition, we have

& |# +
v | s&1�cs(+) &v& s

W 1(Z)2

&# +
v &��c�(+) &v&W 1(Z)2

Proof. Recalling the definition of S in (4.1), the representation (B.1)
of T +

t yields

# +
v (t)=

2
? |

- 1&+

- &+
d! sin(!t) :

k # Z

(Sv)1
k rk0(&(!2++))

+
2
? |

- 1&+

- &+
d! ! cos(!t) :

k # Z

(Sv)2
k rk0(&(!2++))

where

rk0(x)=[(1&a)2 (&x&x2)+(\+ax)2]&1

_[(1&a) - &x&x2 cos(b(x) |k| )+(\+ax) sin(b(x) |k| )]

Since rk0(0)=rk0(&1)=0, the above functions can be extended to a
continuous function on R by setting them equal to zero outside [&1, 0].
Riemann�Lebesgue Lemma together with Proposition B.1 yields that # +

v (t)
is a continuous function which vanishes at infinity so we have the second
estimate for some constant c�(+).

Next, for ! # [- &+ , - 1&+ ], one easily recovers

} d
d!

rk0(&(!2++)) }�c1 |k| [(!2++)&(!2++)2]&1�2 (B.4)

Clearly, for a finite supported element w # W 1(Z), rw, e0
belongs to

L p(R) for each 1�p<2. Furthermore, we compute

|
- 1&+

- &+
d! rw, e0

(&(!2++)) sin !t=
1
t |

R

d! _ d
d!

rw, e0
(&(!2++))& cos !t

Accordingly, if we set g(!)=&ir(Sv)1, e0
+!r(Sv)2, e0

, so that #v=
(2 - 2�- ? )_Re[F(g)] (where F( } ) stands for the Fourier transform),

|
R

|#v(t)| s dt�c2 |
R

|F(g)| s

|t| s+1
dt+c2 |

R

|F(g$)(t)| s

|t| s+1
dt
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Thus,

|
R

|#v(t)| s dt�c2 _|R

( |t| s+1)&(1&(s�2))&1&
1&(s�2)

&g&s
2

+c3 _|R

( |t| s+1)&3�2&
2�3

&F(g$)&s
3s

�c4 &g&�+c5 &g$&s
(1&(1�3s))&1

�c6 &v&s
W 1(Z)2

where we have used the Ho� lder and the Haulsdorff�Young inequalities
since 3

2�(1&(1�3s))&1<2.
By the above estimate we have the assertion for finitely supported

sequences. Now, if v # W 1(Z)2, we choose a sequence [vn] made of
elements with finite support which converges in W 1(Z)2 to v. We have, by
Fatou Lemma,

| |# +
v (t)| s dt�lim inf | |# +

vn
(t)| s dt

�cs(+) &v& s
W 1(Z)2

which is the assertion. K

APPENDIX C

This appendix contains a crucial estimate for the study of the long
time behavior of the non linear system.

We recall that 2n
t =[(t1 ,..., tn) # Rn : t�t1� } } } �tn�0], #w is defined

in (5.4), G� is given in (5.13) and finally I&I is defined in (6.1).

Lemma C.1. For each s # ( 2
3 , 1] we have the estimate

|
2 n

t_R n
|G� (v, t

�
n, *

�
n)| dt1 } } } dtn |&| (d*1) } } } |&| (d*n)

�2n I&In &#e0, 1
&n

1 exp { & |#v | s&1

2s &#e0, 1
&1= c[n ln(ln n)]�(ln n)

where c>e is some constant.
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Proof. We start by setting

#(t) :=#e0, 1
(t), 1 (t) :=#v(t)

as e0, 1 and v are kept fixed through the following analysis.
Using the representation (5.13), it follows

|G� (v, t
�
n, *

�
n)|=2n `

n

k=1
} sin \*k

2
:
n

j=k+1

*j #(tk&t j )+1 (tk)+ }
�2n `

n

k=1
_} sin \*k

2
:
n

j=k+1

*j #(tk&t j )+ }+ } sin \*k

2
1 (tk)+ }&

�2n `
n

k=1
_ :

n

j=k+1
} *k *j

2 } |#(tk&tj )|+ } sin \*k

2
1 (tk)+ }&

= :
n&1

j=0

2n& j :
A/[1,..., n&1]

*A= j

`
k � A } sin \*k

2
1 (tk)+ }

_ `
k # A _ :

n

l=k+1

|*k*l | |#(tk&tl)|&
= :

n&1

j=0

2n& j :
A/[1,..., n&1]

*A= j

:
_ # 5A

`
k � A } sin \*k

2
1 (tk)+ }

_ `
k # A

|*k*_(k) | |#(tk&t_(k))|

where 5A :=[_: A � [2,..., n] | _(k)>k]. Next, we would like to integrate
the above expression. The difficulties come from the fact that the integrand
does not have the invariance w.r.t. the permutations of the variables which
would make easy to handle the domain of the integral. It is then convenient
to ``symmetrize'' the above expression, nevertheless this must be done with
some care in order not to spoil the subsequent estimates. To do this, we
consider the following n_n matrices

[B(A, _)]kl :={$kl

$kl&$_(k) l

k � A
k # A

for each _ # [1,..., n]A with |A|�n, and define

5� A=[_ # [1,..., n]A | |det B(A, _)|=1]
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As |det B(A, _)|=1 if _ # 5A we have 5A/5� A . Moreover a permuta-
tion ? # Pn acts in a natural way on _ # [1,..., n]A and it is easily seen that
5� A is globally invariant under this action.

Continuing our analysis we get

|
2n

t_Rn
|G� |� :

n&1

j=0

2n& j :
A/[1,..., n]

*A= j

:
_ # 5� A

|
2t_Rn

`
k � A } sin \*k

2
1 (tk)+ }

_ `
k # A

|*k *_(k) | |#(tk&t_(k))|

�
1
n!

:
n&1

j=0

2n& j :
A/[1,..., n]

*A= j

:
_ # 5� A

|
R n_R n

`
k � A } sin \*k

2
1 (tk)+ }

_ `
k # A

|*k *_(k)#(tk&t_(k))|

where we have used the invariance by permutations.18

Let us now consider the change of variable (*$k , t$k)=(*k , tk) if k � A
and (*$k , t$k)=(*k , tk&t_(k)) if k # A. The Jacobian of such a transformation
is exactly |det B(A, _)| which is precisely 1 by definition. Accordingly, the
following estimate is obtained

|
2 n

t_Rn
|G� |�

1
n!

:
n&1

j=0
\n

j+ 2n& j

_ :
_ # [1,..., n] j

|
R n_R n

`
j

k=1

|*k*_(k) #(tk)| `
n

k= j+1

sin \} *k

2
1 (tk) }+
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18 Given any function f : R2 � R and g: R4 � R and, for each permutation ? of [1,..., n] and
L>0, defining 2(?) :=[ t

�
# Rn | 0�t?&1(k)�t?&1(k+1)�L], it follows

:
A/[1,..., n]

*A= j

:
_ # 5� A

|
2(id)_Rn

`
k � A

f (*k , tk) `
k # A

g(*k , tk , *_(k) , t_(k))

�
1
n!

:
A/[1,..., n]

*A= j

:
_ # 5� A

|
[0, L]n_Rn

`
k � A

f (*k , tk) `
k # A

g(*k , tk , *_(k) , t_(k))

To see this it is enough to apply the change of variables (*$k , t$k)=(*?(k) , t?(k)) to the first
member of the above expression whereby obtaining

:
A/[1,..., n]

*A= j

:
_ # 5� A

|
2(?)_Rn

`
k � A

f (*k , tk) `
k # A

g(*k , tk , *_(k) , t_(k))

and then notice that the 2(?) are all disjoint and their union is exactly [0, L]n.



To continue, let us notice that, for each s # ( 2
3 , 1] and %>0, we can

write

|
R

|sin(%1 (t))|�|
[ |1 (t)|>%&1]

1+|
[ |1 (t)|�%&1]

|sin(%1 (t))|

�|
[ |1 (t)|>%&1]

%s |1 (t)| s+|
[ |1 (t)|�%&1]

% |1 (t)|1&s |1 (t)| s

�%s & |1 | s&1

where we have used the results of Lemma B.3. Moreover, notice that, for
each s # (0, 1] and k>0,

|
R

|&| (d*) |*|k+s�_�R |&| (d*) |*|k+1

�R |&| (d*) |*|k &
s

|
R

|&| (d*) |*|k

#_ k!
(k&1)! |

R

|&| (d*)
|*|k+1

k! &
s

__|R

|&| (d*)
|*|k

(k&1)! &
1&s

(k&1)!

�ks(k&1)! I&I�k! I&I

where, keeping in mind the definition (6.1) of I&I, we have used the
property (5.3) for & and Jensen inequality.

Collecting the last results and using again a bit of combinatorics19 we
obtain
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19 Let [k1 ,..., kl ] be a partition of j (i.e., � l
m=1 km= j). The number of _ # [1,..., n] j such that

*_&1(i){0 are exactly [k1 ,..., kl ], is precisely

\n
j+ \ j

k1+ } } } \ j&k1& } } } &kl&1

k l +=\n
j+ [k1! } } } k l !]

&1 j !

while all the possible partition in l elements are less than

\ j
l&1+

which is the number of ways in which one can section the string (1,..., j) in l segments (the
size of each segment is the size of the one element of the partition).

For more details see ref. 12.



|
2 n

t_R n
|G� |�I&In

n!
:
n

j=1 \
n
j+

2

2(n& j)(1&s) :
j

l=1

:
[k1 ,..., kl ]

�l
m=1 km= j

&#& j
1 & |1 | s&n& j

1 j !

�I&In

n!
:
n

j=1
\n

j+
2

2(n& j)(1&s) j ! &#& j
1 & |1 | s&n& j

1 :
j

l=1
\ j

l&1+
�2n I&In &#&n

1 :
n

j=1
\n

j+
2& js

j !
&#&& j

1 & |1 | s& j
1

Since ( n
k)�nk�k! and k!�kke&k, for each x>0 and L<n�2, it holds

:
n

j=0
\n

j+
x j

j !
� :

[L]&1

j=0
\ n

[L]+
x j

j!
+ :

n

j=[L]

2n x j

j !

� :
[L]&1

j=0 \ ne
[L]+

[L] x j

j !
+

2nx[L]

[L]!
:

n&[L]

j=0

x j

j !
j ! [L]!

( j+[L])!

�{\ne
L +

L

+
2nxLeL

LL = ex

So, by choosing L=n�(ln n+3) in the above estimate, we finally have,

|
2n

t_Rn
|G� |�2n &#&n

1 I&In e& |1 |s&1 �(2s &#&1)c(n ln ln n)�(ln n)

where c is a suitable constant greater than e. K
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